Study of the biological function of the Alternative Oxidase (AOX) from *Moniliophthora pernicious* (witches' broom fungus) in *Saccharomyces cerevisiae*

G. Moretti, G. Monteiro

Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo - USP. São Paulo, Brazil, *Gabrielmoretti@usp.br*

Introduction: *Moniliophthora pernicious* is a basidiomycete fungus that causes witches-broom disease of cocoa. A number of techniques to control the disease has been applied and tested, including the use of fungicides which are inhibitors of the main respiratory chain, specific to the fungi. However, *M. pernicious* has proved to be resistant to these drugs and a possible explanation for this resistance is the activity of an alternative oxidase (AOX).

Objective: this work aims to characterize the morphological and biochemical changes related to the heterologous expression of the *M. pernicious* AOX gene in a biological system by transforming the *S. cerevisiae* with this gene.

Methodology: A plasmid containing *Mp-AOX* gene was a kindly gift from Dr. Gonçalo A.G. Pereira. *Mp-AOX* was cloned into the pYES2/CT vector (Invitrogen) for galactose induced expression in *S. cerevisiae*. *Mp-AOX* gene was sequenced using the ABI platform for gene integrity verification. The strain W303-1b was transformed with pYES2/CT+*Mp-AOX* and with empty pYES2/CT as a control.

Results: We report the difference in the biomass formation of W303-1b strain transformed with *Mp-AOX*p grown in galactose containing medium compared with the same strain grown in glucose, suggesting that the induced expression of *Mp-AOX*p causes a decrease in cell formation. Reinforcing this suggestion, in the same culture media (galactose) the cells expressing *Mp-AOX* gene produced lower amounts of biomass than the cells containing the empty vector.

Conclusion: *Mp-AOX* gene expression leads to lower amounts of biomass probably caused by electron transport deviation and consequently low concentration of ATP (hypotheses which will be next investigated).

Supported by: FAPESP;CAPES.

Keyword: mitochondria, alternative oxidase, reactive oxygen species