RNA-Seq Transcriptional Profiling Of *Herbaspirillum seropedicae* SmR1 Reveals Roles For Fnr Orthologs In Controlling The Expression Of The Cytochrome c - Based Electron Transport Pathway

Marcelo B. Batista\(^1\), Michelle Z. T. Sfeir\(^1\), Hellison Faoro\(^1\), Roseli Wassem\(^2\), Maria B. R. Steffens\(^1\), Fábio O. Pedrosa\(^1\), Emanuel M. Souza\(^1\), Ray Dixon\(^3\), Rose A. Monteiro\(^1\).

\(^1\) Dep. de Bioquímica e Biologia Molecular, UFPR, Curitiba-PR – Brazil; \(^2\) Dep. de Genética, UFPR, Curitiba-PR – Brazil; \(^3\) Department of Molecular Microbiology, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK

Introduction. The Fnr protein plays an important role in transcriptional regulation of genes during the switch from aerobic to oxygen-limiting conditions. Analysis of *H. seropedicae* SmR1 genome revealed the presence of three *fnr* genes. We have used RNA-seq to compare global changes in the transcription profiles of a triple *fnr* mutant (MB231) against the wild-type strain of *H. seropedicae*. **Materials and Methods.** For RNA extraction we grew the wild-type and MB231 strains in aerobic conditions to an optical density of 0.4 and then switched the cultures to 2% oxygen for 1.5 hours. To validate the differential transcriptional profiles obtained from RNA-Seq, we performed β-galactosidase assays with transcriptional lacZ fusions of specific genes and also analyzed the cytochrome content spectroscopically and by heme protein staining. **Results and Discussion.** Global gene expression patterns revealed that potentially, 240 *H. seropedicae* genes were differentially expressed. Of these, 174 were down-regulated in the *fnr* triple mutant strain, indicating that these genes are activated by Fnr. 66 genes were up-regulated in the MB231 strain, implying that they are targets for Fnr-mediated repression. Large changes were observed in genes required for the biosynthesis and activity of the *cbb3*-type oxidase. The *petABC* operon, which encodes the cytochrome *bc1* complex was down-regulated 7-11 fold in the Fnr mutant compared with the wild-type control. In addition, differential expression of genes encoding c-type cytochromes and cytochrome c biogenesis was observed. Furthermore, deletion of all three *fnr* alleles resulted in a growth phenotype under microaerobic conditions. **Conclusions.** Our results imply that the *H. seropedicae* Fnr proteins activate the expression not only of the *cbb3*-type heme copper oxidase, but also of many other components of the cytochrome c branch of the respiratory chain. Probably the Fnr proteins enable *H. seropedicae* to exploit respiratory flexibility and optimize energy coupling in response to oxygen availability.

Key words: RNA-Seq, *Herbaspirillum seropedicae*, Fnr, cytochrome.

Financial support: INCT-FBN, CNPq and CAPES