Pentachlorophenol Exhibits Differential Redox Chemistry under *in Vitro* and *in Vivo* conditions in Rats’ Brain

Ogunbolude Y.\(^1,2\), Rocha J.B.T. \(^1\) and Kade I. J. \(^1,2,3\)

\(^1\)Programa Pos-graduação em Bioquímica Toxicológica, CCNE, Universidade Federal de Santa Maria, RS Brazil, \(^2\)Department of Biochemistry, Federal University of Technology, Akure, Ondo State, Nigeria; \(^3\)Departamento de Farmacobiología, Centro de Investigacion y de Estudios Avanzados, Sede Sur, Calzada de los Tenorios 235, Colonia Granjas Coapa, 14330 México, D.F., Mexico

ABSTRACT

The present study sought to determine the possible oxidative effect or otherwise of pentachlorophenol (PCP) on mammalian cerebral lipids under *in vitro* and *in vivo* conditions. Production of aldehydic products was used as a marker of cerebral lipids oxidative damage in rats' whole brain subjected to oxidants and/or PCP assaults. The results show that PCP exerted considerable inhibitory effect on cerebral lipid peroxidation subjected to iron (II), sodium nitroprusside, hydrogen peroxide and sodium oxalate oxidative attacks *in vitro*. Conversely, administration of 37.5 - 300 mg/kg body weight PCP into rats for 30 minutes caused an increase in cerebral aldehydic compounds. This phenomenon was accompanied by reduced level in total cerebral thiols *in vivo*. Hence, the seemingly antagonistic redox chemistry of PCP under *in vitro* and *in vivo* conditions possibly suggests that bio-transformed metabolic intermediate(s) of PCP may be intrinsic to its toxicity *in vivo* and that such intermediates possibly exert their toxicity using mechanisms related to oxidative stress.

Key words: Pentachlorophenol, Oxidative stress, cerebral lipids

Acknowledgements: Grateful to CAPES, FINEP, FAPERGS, PRONEX and CNPq CNPq-PROAFRICA, CNPq-Neuroprotection,