NEUROPROTECTIVE EFFECTS OF SECONDARY METABOLITES OF NATIVE POTATO IN A MODEL IN VITRO AND IN VIVO IN RAT BRAIN

Suárez, S1; Ramírez, E.G2.; Sanabria, O1.

1 Centro de Investigación de Bioquímica y Nutrición, Facultad de Medicina, Universidad Nacional Mayor de San Marcos, Lima, Perú. 2 Facultad de Ciencias Biológicas, Universidad Nacional San Cristóbal de Huamanga, Ayacucho, Perú.

Peru has over 3000 varieties of native potatoes, several scientific studies show its potential uses as part of alternative medicine. **The aim** was to demonstrate that antioxidant secondary metabolites present in the native potato “Puca Simi” exert in vitro and in vivo neuroprotection.

Methodology: It was used a native potato aqueous extract. The total antioxidant capacity (TAC) by ABTS and DPPH techniques was determined. Total phenols was also determined. For in vitro assay, a rat brain homogenate was prepared at 5% and oxidative stress was induced by using hydrogen peroxide 2.4 mM: a) homogenized b) homogenized with H2O2 c) homogenized, H2O2 and native potato extract. For the in vivo test, 4 groups: I) control group II) group with phenylhydrazine, III) Puca Simi extract group and IV) phenylhydrazine and Puca Simi group. The phenylhydrazine produces hyperbilirubinemia, the only dose used was intraperitoneally 60 mg/kg of body weight. The potato extract given to the animals was 665 mg/kg of body weight. TBARS assay by Buege and Aust was performed in both models. In addition, in vivo model were determined the activity of SOD by Marklund & Marklund and catalase by Aebi.

Results: ABTS-TEAC was 0.215 mmol/g soluble matter and DPPH-TEAC was 14.60 µmol/g soluble matter. The total phenol was 591.6 µg EAG/mL extract + 11.9. TBARS in the in vitro model: a) 68.4 b) 136.5 c) 20.6 nmol/g tissue. TBARS produced in the in vivo model: I) 129 ± 16.6, II) 170 ± 23.3, III) 134 ± 9.2 and IV) 143 ± 11.5 nmol/g tissue with p < 0.01 between I and II, and p <0.05 between II and IV. The results of SOD and catalase did not produce significant differences.

Conclusion: The secondary metabolites including polyphenols have antioxidant activity and exerted neuroprotection in vitro and in vivo. Mechanism is still unknown.

Supported: FEDU-San Marcos. **Acknowledgment:** International Potato Center.