TARGETING EPigenetic REGulators TO CONTROL SCHISTOSOMIASIS

Carneiro, V.C.1, de Abreu da Silva, I. C1, Gonçalves, B. M1, Monteiro, P. H S.1, Ganesan, A.2, Verjovski, S.3, Amaral, M. S.3, Borrello, T.3, Pierce, R.J.4, Fantappié, M. R1

1 Instituto de Bioquímica Médica, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil, 2 University of East Anglia, Norwich Research Park, UK, 3 Instituto de Química, Universidade de São Paulo, São Paulo, Brazil, 4 CIIL, INSERM U1019 – CNRS UMR 8204, Université Lille Nord de France, Institut Pasteur de Lille, France.

Introduction: Schistosomiasis is a chronic disease that affects 240 million people in the world. The current strategy for the treatment and control of schistosomiasis is the use of Praziquantel, the only available drug. The development of new drugs is therefore mandatory. The new strategy that we have chosen is to target the enzymes involved in epigenetic modifications of the chromatin, such as acetylation and methylation of histones. We have previously shown that acetylation can serve as an affective drug target. In the present work, we show that targeting one major histone demethylase LSD1 from S. mansoni is also a valid therapeutic approach. Objective: Test several LSD1 inhibitors as a new strategy to control Schistosomiasis. Methodology: Drug screening of S. mansoni, by in vitro culture of adult worms or the larval stage of schistosomula; Viability estimation and quantification by ATP measurements; Confocal Laser Scanning Microscopy of the adult worms and quantitative RT-PCR. Results: Several compounds that specifically target LSD1 have been tested against schistosomula and adult worms. We have identified two potent compounds showing high toxicity leading to complete mortality of the immature forms of the parasite, after 48h at a dosage of 10-25 uM. Adult worms were also sensitive to the same compounds, however after longer period (72h) of incubation. Egg laying by adult female schistosomes was significantly affected by the LSD1 inhibitors. Conclusions: So far, we have validated two LSD1 inhibitors as a novel and promising strategy to control schistosomiasis. Their molecular mechanisms of action have also been pursued. Acknowledgements: Thanks to Sr. Paulo and the Malocology lab at IOC/FIOCRUZ – RJ. Key Words: Epigenetics, Schistosoma mansoni and Therapeutics.