HIGH FAT DIET CONSUMPTION IMPAIR EARLY α_7nAChR EXPRESSION IN SPLEEN OF SWISS MICE.

Souza, A.C.P.1; Lemes, S.F2; Milanski, M.1; Torsoni, A.S1; Torsoni, M.A.1

1Faculdade de Ciências Aplicadas, University of Campinas, Campinas, SP, Brazil. 2Institute of Biology, University of Campinas, Campinas, SP, Brazil.

Antiinflammatory cholinergic pathway can control the inflammatory response. This neural circuit is responsible for converting signals from the brain to peripheral tissues, subunit-dependent manner α_7 nicotinic acetylcholine receptor (α_7nAChR). High-fat diet-induced obesity and insulin resistance (IR) are associated with inflammation, but the relation between these metabolics disorders and cholinergic anti-inflammatory pathway are unclear. To determine factors that may cause IR, we have performed a time-course study in mice fed a high fat diet (HFD). Swiss male mice were fed (3 days, 5, and 16 weeks) with standard chow or HFD (60% fat). Body weight, fasting glucose, epididymal fat pad mass, spleen inflammatory cytokines and α_7nAChR expression were evaluated. Body mass, fasting glucose and epididymal fat pad mass were significant increased in HFD compared to SC mice. IL-1β expression was increased after 5 and 16 weeks (2.1-fold and 2.6-fold, respectively) in HFD compared to SC mice. TNF-α gene expression was 1.5-fold higher in HFD than SC mice (5 weeks). α_7nAChR gene expression was reduced (3.2-fold) in HFD compared to SC mice (3 days), but for 5 and 16 weeks did not observe difference between groups evaluated. These results show that HFD consumption modulates early (3 days) spleen α_7nAChR gene expression compared to proinflammatory cytokines expression (5 and 16 weeks). In this condition the inflammatory response could be elevated and promote damage to tissues.

Acknowledgments: CAPES, CNPq and FAPESP.

Key words: cytokines, α_7nAChR, mice.