THE ADVENTURES OF AN UPPITY MITOCHONDRIAL UNCOUPLING PROTEIN IN PLANT ENERGY METABOLISM

Renato Maia Souza Filho¹
¹Universidade de Campinas, Centro de Biologia Molecular e Engenharia Genética (São Paulo, Brazil)

Introduction

UCP is a mitochondrial uncoupling protein that stimulates the electron transport chain by constantly dissipating the proton gradient across the inner mitochondrial membrane, which decreases the rate of ROS production. Plants overexpressing the UCP1 gene (p07 lines) have shown significant changes in the expression of genes encoding proteins from several different pathways in the cell, including genes that affect chloroplast metabolism. We have found by metabolite quantification that those plants seem to accumulate lactate, alanine and fumarate, which are metabolites known for being present during hypoxic stress, when plants use the fermentative pathway rather than aerobic respiration to supply the demand for energy. Furthermore, mitochondria from p07 plants have a donut-like shape, which are characteristic of mammal tissues under hypoxic stress.

Objectives

Investigate whether plants overexpressing the UCP1 have a hypoxia-like profile and seek for changes in chloroplast metabolism.

Materials and methods

Induction of a hypoxic stress with a 5% oxygen gas in order to compare the gene expression of endogenous UCP1 and the fermentative pathway in both WT and p07 plants under normoxia and hypoxia; chlorophyll quantification by spectrophotometry and fluorescence measurements.

Discussion

The real-time PCR analysis has shown that p07 plants under normal conditions up-regulate genes from the fermentative pathway just as plants under hypoxia do. We have found that p07 plants are down-regulating photosystems subunits-encoding genes. Nevertheless, they also have a greater amount of chlorophyll content, which probably allows the cells to reach homeostasis again and have the same photosynthesis efficiency of WT plants, as we have found by fluorescence quantification of leave samples.
Conclusion

P07 plants seem to be shifting from aerobic to anaerobic metabolism, which might explain why those plants have a greater rate of carbon assimilation. However, it's still unclear how they maintain same photosynthesis efficiency of wild type plants.

Acknowledgements

I would like to acknowledge my supervisor, my co-supervisor and all the people from my laboratory; I couldn’t have done anything without them.

Key-words

Mitochondria, energy, UCP.