EFFECT OF ORAL INTAKE FROM *Cratylia mollis* SEED FLOUR AND SEED LECTIN ON BODY WEIGHT AND RAT ORGANS

Oliveira, A.C.\(^1\); Aguiar, R.G.\(^3\); Maia, F.M.M.\(^3\); Santos, A.C.O.\(^5\); Silva, M.D.C.\(^4\); Coelho, L.C.B.B.\(^2\); Vasconcelos, I.M.\(^3\); Correia, M.T.S.\(^2\)

\(^{1}\)Departamento de Ciências Biomédicas, Universidade do Estado do Rio Grande do Norte, UERN, RN, Brazil; \(^{2}\)Departamento de Bioquímica, Universidade Federal de Pernambuco, UFPE, PE, Brazil; \(^{3}\)Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, UFC, CE, Brazil; \(^{4}\)Departamento de Ciências Animais, Universidade Federal Rural do Semi-Árido, UFERSA, RN, Brazil; \(^{5}\)Departamento de Ciências Fisiológicas, Universidade do Estado de Pernambuco, UPE, PE, Brazil.

INTRODUCTION: *Cratylia mollis* Mart. (camaratu bean) seeds stand out as a rich source of lectins (Cramoll isoforms 1, 3 and 4). **OBJECTIVE:** To evaluate the feasibility of seeds as food source, this study aimed to approach the influence of diets containing *C. mollis* seed meal or Cramoll 1,4 on body weight and isolated rat organs. **MATERIALS AND METHODS:** Control and experimental groups were fed (10 days) with different diets (control - diet containing egg-white, EW; protein-free diet, PF; raw seed meal, RSM; cooked seed meal, CSM; diet containing EW plus lectin, Cramoll 1,4). Daily weight of animals, amount of feed provided and amount not consumed were measured. Subsequently animals were sacrificed; internal organs were dissected, lyophilized and weighed. Results were statistically analyzed. **RESULTS AND DISCUSSION:** PF, RSM and CSM groups showed daily intake and body weight lower than EW group. CSM group reached body weight higher than PF and RSM groups, suggesting that *C. mollis* seeds have compounds that inhibit intake and weight gain. However, cooked seeds reduced the intake inhibitory effect. Cramoll 1,4 group showed body weight superior to EW group, excellent physical health and vitality signals, suggesting that Cramoll 1,4 stimulates eating and promotes greater weight gain. However, all experimental groups showed hypertrophy of many organs. Cramoll 1,4 group showed significant hypertrophy of the thymus, pancreas, stomach, intestine, liver, heart and kidney, suggesting that Cramoll 1,4, while stimulating intake and weight gain, changes the pattern of organ development. **CONCLUSION:** Seeds of *C. mollis* can have intake inhibitor constituents (not Cramoll 1,4) and seed flour ingestion promotes reduction in weight gain. Cramoll 1,4 stimulates the intake and weight gain. Although involved with these contrary effects, both *C. mollis* seed flour and Cramoll 1,4 induced changes in rat development, causing hypertrophy of organs. **Keywords:** *Cratylia mollis*, seed lectin, hypertrophy. **Acknowledgements:** CAPES, CNPq.