DNA ligase is a specific type of enzyme, which facilitates the joining of DNA strands together by catalyzing the formation of a phosphodiester bond. It plays a role in repairing single-strand breaks in duplex DNA in living organisms, but some forms may specifically repair double-strand breaks. All DNA ligases operate with the same mechanism of action, but the different cofactors used by these enzymes are responsible for dividing them into two subfamilies: ATP-dependent and NAD$^+$ dependent DNA ligases. *Trypanosoma evansi* is the most widespread of the pathogenic salivarian trypanosomes and affects most livestock and wild animals mainly in endemic regions. The *T. evansi* infection is popularly known as “surra” or “mal de cadeiras” and there are no effective drugs or vaccines to cure or prevent the disease. Like other eukaryotes, *T. evansi* DNA ligase is NAD$^+$ dependent. This study aimed to identify and characterize the DNA ligase gene of *T. evansi* (TeLIG) and purify the recombinant protein for further enzymatic and structural characterization. In order to obtain a purified genomic DNA (gDNA), the blood of a Wistar rat infected with *T. evansi* was first purified by Percoll® gradient and ion exchange chromatography with DEAE-cellulose. The gDNA was then obtained by extraction with phenol-chloroform. The open reading frame encoding TeLig was obtained by using specific degenerated primers. A fragment of 2241 base pairs was amplified by polymerase chain reaction, extracted, purified and cloned into a commercial vector. TeLIG displays a high homology with *T. brucei* DNA ligase. The TeLIG gene was inserted in pET 28a expression vector, transformed into *E. coli* BL21 and was induced with 1mM IPTG at 20°C. A protein band around 82kDa was observed in SDS-PAGE gels. The recombinant protein is being processed for further biochemical and structural characterizations.

Keywords: *Trypanosoma evansi*, DNA ligase

Support by: UDESC, CNPq e FAPESC