Potentiating action of sedative effect of extracts of Cerrado Tingui seed (*Magonia pubescens*)

Celina M.P.G. Dore¹, Paula I.M. Santos¹, Janeusa Trindade Souto², Elizeu A. dos Santos¹

¹ Departamento de Bioquímica- UFRN
² Departamento de Imunologia- UFRN

Experimental studies suggest that alterations in sleep can influence the levels of cytokines involved in inflammatory processes. Popular accounts attest to the action of the extract *Magonia pubescens* (MP) as facilitators in fishing in breeding because its action numbing in fish. The objective of this study was to evaluate the sedative action of MP extracts and their cytotoxicity and dose IL-6 and TNF-α. The behavioral tests were carried out in Swiss female mice pretreated with saline or M. pubescens extract at different doses (0.1 and 1 mg / kg) intraperitoneally protocol approved by CEUA- UFRN (No. 033/2014 ). The sedative effect was evaluated for sleep induction tests by thiopental, Rota Rod (assessment of motor coordination) and open field (locomotor activity). Cell viability tests were performed the evaluation of mitochondrial function. IL-6 and TNF levels were evaluated using ELISA kits. The treatment with the aqueous extract (AE) M. pubescens seed significantly increased sleep time of the treated animals thiopental 1 mg / kg. (saline = 219.0 ± 80.9 s; MP 1μg / kg = 1217 ± 223 s) P <0.01, ANOVA. The dose of 0.1 mg / kg did not affect sleep time. In Rota Rod test and in the open field there was no statistical difference between the control group (saline) and animals treated with MP (p> 0.05, ANOVA). The Cell viability showed that the doses tested is not toxic to macrophages, and not alter the release of TNF-α, however, the dose of 1μg / kg causes an increase of 400% in IL-6. We conclude that extract of M.P. enhances the effects generated by i.p. administration thiopental increased about 6 times the sleeping time in mice. All doses have no toxicity in cultured cells and increase approximately 34 times the IL-6 secretion in macrophages incubated with PM 1 μg/ ml.