Trypsin Inhibitor From Peanut Is Associated With Reduced Fasting Glucose

Serquiz, A.C.1; Machado, R.J.A.1; Lima, V.C.O.1; Carneiro, M.A.A.2; Krause, M.F.D.3; Carvalho, F.M.C.4; Maciel, B.L.L.4,5; Uchôa, A.F.1; Santos, E.A.1; Morais A.H.A.4,5

1Postgraduate Biochemistry Program, Biosciences Center, Federal University of Rio Grande Do Norte, Natal, RN, Brazil; 2Course of Biological Sciences, Faculty of Science and Culture Extension of Rio Grande Do Norte, Natal, RN, Brazil; 3Course of Medicine, Center for Health Sciences, Federal University of Rio Grande Do Norte, Natal, RN, Brazil; 4Postgraduate Nutrition Program, Center for Health Sciences, Federal University of Rio Grande Do Norte, Natal, RN, Brazil; 5Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande Do Norte, Natal, RN, Brazil.

INTRODUCTION: Nowadays, obesity and type 2 diabetes mellitus prevalence remains growing around the world, being public health problems, reaching epidemic levels. Whereas advances in treatment of obesity and diabetes are being developed, bioactive products are noteworthy. OBJECTIVES: The aim of the research was to evaluate the consume of isolated trypsin inhibitor (AHTI) of peanut paçoca that could promote satiety, reduced fasting glucose and weight control. MATERIAL AND METHODS: Wistar rats (n = 05) were distributed individually and randomly into three groups in cages, receiving AIN-93G for 11 days, consuming 100 g of the following diets: (1) AIN-93G diet; (2) AIN-93G diet supplemented by oral gavage with AHTI (25 mg/kg); (3) AIN-93G diet supplemented by oral gavage with AHTI (50mg/kg). At the end of the procedure, the rats were fasted for 12-15h, blood was collected, serum was separated by centrifugation and used for glucose determination and others biochemistry parameters. RESULTS AND DISCUSSION: Both groups supplemented by AHTI decreased fasting glucose, whereas other biochemical parameters showed no significant variation, remaining within the normal ranges. CONCLUSIONS: The experimental administration of AHTI resulted in low fasting glucose levels, emphasizing the potential of bioactive products, like peanut derivatives, for prevention and treatment of metabolic diseases.

Palavra chave: glucose, peanut, trypsin.
Patrocínio: CNPq and NUPLAN/UFRN.