A Chitin-Binding Protein Isolated from *Moringa oleifera* Seeds (Mo-CBP₄) Exerts Anti-Inflammatory and Analgesic Effects by Oral Administration in Mice

Pereira, M.L.¹, Rocha-Bezerra, L.C.B.¹, Luz, P.B.², Sousa, D.O.B.¹, Oliveira, J.T.A.¹, Alencar, N.M.N.², Oliveira, H.D.¹, Vasconcelos, I.M.¹

¹Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Ceará, Brazil; ²Departamento de Fisiologia e Farmacologia, Universidade Federal do Ceará, Ceará, Brazil

Introduction. *Moringa oleifera* Lam. is a perennial multipurpose tree that has been successfully used in folk medicine to treat several inflammatory processes. In our research group, a 12 kDa chitin-binding protein from *M. oleifera* seeds, named Mo-CBP₄, was purified. **Objectives.** This study aimed to investigate the anti-inflammatory and antihypernociceptive effects of Mo-CBP₄ using animal model. **Material and Methods.** The anti-inflammatory effect of Mo-CBP₄ (10, 20 and 40 mg/kg, p.o.) was investigated using the model of zymosan-induced neutrophil migration in mice. To assess the antihypernociceptive effect of Mo-CBP₄, the protein was firstly administrated orally by gavage (20, 40 and 80 mg/kg), and then mechanical models of hypernociception induction were used: carrageenan (CG, 300 μg/paw), prostaglandin E₂ (PGE₂, 100 ng/paw) or epinephrine (EP, 100 ng/paw). Myeloperoxidase from paw was measured to evaluate neutrophil migration. **Results and Discussion.** Mo-CBP₄ significantly inhibited the neutrophil influx in peritoneal cavity induced by zymosan. This inhibitory effect was completely prevented when the protein was combined with N-acetyl-D-glucosamine, demonstrating the participation of carbohydrate-binding sites. Furthermore, Mo-CBP₄ reduced IL-1 and increased IL-10 levels in peritoneal fluid and serum, respectively. In addition, oral treatment with Mo-CBP₄ (40 mg/kg) inhibited the development of mechanical hypernociception induced by CG; however, no effect was observed on hypernociception induced by EP nor PGE₂. The inhibition of inflammatory hypernociception by Mo-CBP₄ was associated with the prevention of neutrophil recruitment to the plantar tissue of mice. **Conclusions.** Our results provide information about the antinociceptive and anti-inflammatory properties of Mo-CBP₄ and suggest that this glycoprotein might be potentially interesting in the development of new clinically relevant drugs for the management of painful and/or inflammatory diseases.

Keywords: *Moringa oleifera*; chitin-binding protein; anti-inflammatory; antihypernociceptive.
Supported by: FUNCAP, CAPES, CNPq and UFC.